
Adaptive Mode Estimation of Continuous Distribution*

Anirudh Singhal 1, Subham Pirojiwala 2, Guide : Prof. Nikhil Karamchandani

Abstract— In this paper, we study the problem of
finding the point with the nearest kth neighbour, from
a dataset of n points, in a high dimensional space.
One of the applications involves finding the mode of
the continuous distribution, from which the points in
the dataset have been drawn. We present an algorithm
that adaptively estimates the kth neighbour distance for
each point and uses a concentration bound based on
Law of the iterated logarithm. We then demonstrate
experimentally that the algorithm performs better than
the naive method, and another method that is based on
finding the set of k-NN as the first step.

I. INTRODUCTION

The mode of a dataset is a widely used
parameter for various applications in machine
learning, signal processing, etc. In this paper
we use the results of [1] to form a problem
which can be used to adaptively estimate mode
of a dataset drawn from continuous underlying
distribution in various regimes. First, we formally
define our problem and the regimes in which
we study our problem. Next, we propose an
algorithm (Algorithm 1) which can be used to
adaptively estimate the mode of a dataset drawn
from a continuous underlying distribution. Finally
we provide a comprehensive ablation study to
understand various parameters involved in the
algorithm.

II. RELATED WORK

The exact problem we propose has not been
studied extensively but some related problems have
been studied. [2] studies the problem of finding
the approximate k-Nearest Neighbour (k-NN)
set, which is finding a set of O(k) points that

* Work done as a part of RnD project in the Spring Semester’20
1Anirudh is a Dual Degree student in Electrical

Engineering Department, Roll Number: 16D070032, Email:
singhalanirudh18@gmail.com

2Subham is a Dual Degree student in Electrical
Engineering Department, Roll Number: 160040045, Email:
pirojiwalasubham@gmail.com

contains the set of k-NN. One specific case of
which is finding the set of exact k-NN, [3]
deals with the problem of finding the nearest
neighbour graph from noisy distance samples and
[4] discusses algorithms to find out best-K arms
from N stochastic bandit arms with unknown
reward distribution.

As a direct application, our algorithm can
be used to estimate the mode of a continuous
distribution, from which the points in the dataset
have been drawn. In this domain, [1] presents
practical mode estimators that is based on finding
the k-NN, which estimates mode optimally, under
general distributions.

[5] studies the problem of estimating the mode
of a discrete probability distribution where they
query an oracle to get i.i.d. samples generated from
that distribution.

However, the problem of adaptively estimating
the mode of a dataset whose points are taken from
an underlying continuous distribution has not been
studied in our knowledge.

III. PROBLEM FORMULATION

Let X denote a set of n points represented as
follows.

X = {x1, . . . ,xn} ⊂ Rm

The points in X are normalized so that ‖xi‖∞ ≤
1/2 for all the possible values of i. Let xik denote
the kth nearest neighbour of the point xi in the set
X . Then we wish to calculate the point xmk

which
is referred as Estimated Mode using kth Nearest
Neighbour distance. The value of mk is given by
the following equation.

mk , argmin
i∈{1,2,··· ,n}

di,ik (1)

Where di,j is the distance function between the
points xi and xj . In this work triangular inequality
and symmetry properties for the distance function

are not assumed. The works of [1] proved that
the above quantity correctly estimates the mode
for unimodal continuous distribution for certain
bounds on k.

We study this problem in the following two
regimes :
Regime 1 : This is a high-dimensional regime
where the value of m is extremely large. It
was found out by [2] that in this regime it is
unnecessary to compute exact distance to find a
set that contains k nearest neighbours of a point.
In this regime, the distance between two points is
estimated by calculating distance along a randomly
sampled dimension. This is done by sampling
Ti,j indices uniformly at random with replacement
from {1, 2, · · · ,m}. Therefore, the estimate of the
distance di,j at the time instant Ti,j is given by the
following equation.

d̂i,j (Ti,j) =
1

Ti,j

∑
p∈{p1,...,pTi,j}

∣∣∣[xi]p − [xj]p

∣∣∣2 (2)

Where [xi]p is the pth dimension of the point xi.
In this paper we use Python syntax, in which we
store the distance estimates d̂i,j for j ∈ [n]\i in an
array d̂i and the number of dimensions sampled
Ti,j for j ∈ [n]\i in an array Ti.
Regime 2 : In this regime the true distance
between any two points is unknown, but we can
query an oracle which returns the noisy estimate,
Q(i, j), of the true distance between any two points
which is given as follows.

Q(i, j) = di,j + η (3)

Where η is assumed to be distributed as zero
mean sub Gaussian Random Variable whose scale
parameter is σ = 1.

IV. ALGORITHM FOR REGIME 1
We propose AdaptiveModeEstimation

(Algorithm 1) which adaptively estimates
the quantity xmk

where mk is given by the eq.
1 with a probability of 1 − δ. Our Algorithm is
inspired from Upper Confidence Bound(UCB)
algorithm [6], in which we continuously sample
the point with the minimum Lower Confidence
Bound (LCB) and stop when a certain stopping
criteria is met.

To calculate the LCB and UCB for the kth

Nearest Neighbour of a point xi ∈ X we utilise
the subroutine AdaptiveKNN (Algorithm 2) which
is a variant of the method proposed by [2].
This subroutine is based on actively estimating
the set Xnear which contains k nearest points
of the point xi. Once this set is found another
subroutine, FindKthBest (Algorithm 3) is used to
find kth nearest neighbour of xi from the set Xnear
almost surely. The algorithm 2 works by adaptively
estimating the distance di,j = 1

m
‖xi − xj‖22. The

arrays d̂i and Ti are provided as an input to the
Algorithm 2.

The confidence bounds used are a
non-asymptotic version of the law of iterated
logarithm [7], which is given by the following
equation.

α(u) ∝
√

log(log(u)n/δ)

u
(4)

Let UCB and LCB denote two arrays of
size n − 1 which contains the upper bounds and
lower bounds for the distance estimates d̂i with
Ti number of samples respectively. Let (·) be a
permutation of [n− 1] such that d̂[(1)] ≤ d̂[(2)] ≤
. . . d̂[(n− 1)], then at every round of Algorithm 2
two points q1 and q2 are sampled which are given
by the following equations.

q1 = arg max
i∈{(1),...,(k)}

UCB[i] (5)

q2 = arg min
i∈{(k+1),...,(n−1)}

LCB[i] (6)

The distance d̂i,j is updated using the following
function.

ED(d̂i,j, T) =

T−1
T
d̂i,j + 1

T

∣∣∣[xi]p − [xij]p

∣∣∣2 T < m

1
m

∥∥xi − xij
∥∥2
2

T = m
(7)

Where ED stands for estimated distance and p is
chosen randomly from {1, 2, · · · ,m}. Once the set
of k points closest to xi are identified, Algorithm
2 invokes Algorithm 3 to find the kth nearest
neighbour. Let (·) and {·} be two permutations
of [n − 1] such that UCB[(1)] ≤ UCB[(2)] ≤
. . . UCB[(n − 1)] and LCB[{1}] ≤ LCB[{2}] ≤
. . . LCB[{n−1}], then Algorithm 2 calculates the

Algorithm 1 AdaptiveModeEstimation
Input parameters : k, n, δ and num steps
for i in range(n) do

Initialize d̂i and Ti as zero vectors
d̂i, Ti, u, l← AdaptiveKNN(d̂i, Ti, xi)
Uk[i]← u, Lk[i]← l

end for
Calculate b1 and b2 as per eq. 10 and 11
respectively.
while Uk[b1] > Lk[b2] do
d, t, u, l← AdaptiveKNN(d̂b1 , Tb1 , b1)
d̂b1 ← d, Tb1 ← t
Uk[b1]← u, Lk[b1]← l
Update the values of b1 and b2

end while
mk ← b1
return xmk

confidence interval of the kth nearest neighbour of
xi as follows.

UCBk = UCB[(k)] (8)

LCBk = LCB[{k}] (9)

Where UCBk and LCBk are the Upper
Confidence Bound and Lower Confidence Bound
of the kth nearest neighbour of xi respectively.

The AdapativeModeEstimation (Algorithm 1) is
inspired from the UCB algorithm, in which we
model each node as an arm and the distance of the
point from it’s kth nearest neighbour is modelled
as the reward of the arm. In this setting we wish to
find the arm with the least reward. First, we find
the UCBk and LCBk for all i ∈ {1, · · · , n} and
store them in the arrays Uk and Lk respectively.
Uk[i] is the upper bound to the distance of xi
from its kth neighbour. Similarly, Lk[i] is the lower
bound. At every round the quantities b1 and b2 are
calculated as follows.

b1 = arg min
i∈{1,...,n}

Lk[i] (10)

b2 = arg min
i∈{1,...,n}\b1

Lk[i] (11)

The Algorithm 1 terminates when Uk[b1] <
Lk[b2], and outputs xb1 as the result.

Algorithm 2 AdaptiveKNN

Input parameters : d̂i, Ti and xi. The
parameters k, n, δ & num steps are inherited
from AdaptiveModeEstimation(Algorithm 1).
The definition of the function ED(·, ·) is as per
eq. 7.
Xi ← X\xi
Let the elements of Xi be denoted as{
xi1, . . . ,x

i
n−1
}

for j in range(n− 1) do
if Ti[j] = 0 then
T [j]← 1
d̂[j]← ED(0, T [i])

else
Initialize the variables as follows
T [j]← Ti[j]
d̂[j]← d̂i[j]

end if
LCB[j]← d̂[j]− α(T [j])
UCB[j]← d̂[j] + α(T [j])

end for
for step in range(num steps) do

Let (·) denote a permutation of [n − 1] such
that
d̂[(1)] ≤ d̂[(2)] ≤ . . . d̂[(n− 1)]
Calculate q1 and q2 as per equations 5 and 6
if UCB[q1] < LCB[q2] then
d̂, T, LCB,UCB ← FindKthBest(d̂, T)

else
for ` ∈ {q1, q2} do

Increment T [`]← T [`]+1 and sample an
index p uniformly at random from [m],
and update d[`] as in 7.

Update LCB and UCB as follows:-
LCB[`]← d̂[`]− α(`)
UCB[`]← d̂[`] + α(`)

end for
end if

end for
Let (·) and {·} denote two permutations of [n−
1] such that
UCB[(1)] ≤ UCB[(2)] ≤ . . . UCB[(n− 1)]
LCB[{1}] ≤ LCB[{2}] ≤ . . . LCB[{n− 1}]
UCBk ← UCB[(k)], LCBk ← LCB[{k}]
return d̂, T , UCBk and LCBk

Algorithm 3 FindKthBest

Input parameters : d̂ and T . The
parameters k, n & δ are inherited from
AdaptiveKNN(Algorithm 2).
for i in range(n− 1) do
LCB[i]← d̂[i]− α(T [i])
UCB[i]← d̂[i] + α(T [i])

end for
Let (·) and {·} denote two permutations of [n−
1] such that
UCB[(1)] ≤ UCB[(2)] ≤ . . . UCB[(n− 1)]
if UCB[(k − 1)] ≥ LCB[(k)] then

for ` ∈ {(k), (k − 1)} do
Increment T [`] ← T [`] + 1 and sample an
index p uniformly at random from [m], and
update d[`] as in 7.

Update LCB and UCB as follows:-
LCB[`]← d̂[`]− α(`)
UCB[`]← d̂[`] + α(`)

end for
end if
return d̂, T , UCB and LCB

V. CORRECTNESS OF THE ALGORITHM 1

In this section prove that the point returned by
the algorithm 1 is the one given by the eq. 1. First
we introduce some notation. For a point xi, let Xi
denote the set X\xi whose points are represented
by
{
xi1, . . . ,x

i
n−1
}

. The distance between between
xi and xij is represented by dij and let d̂ij(T ij)
denote the estimate of dij after T ij samples. The
following is derived from the non-asymptomatic
version of Law of Iterated Logarithms ([7]) derived
in Lemma 3 of [2].

Lemma 1: The following event occurs with
probability 1− δ for δ ∈ (0, 0.05) :

Eα := {
∣∣∣d̂ij(T ij)− dij∣∣∣ ≤ αij,

∀i ∈ [n],∀j ∈ [n− 1],∀t ≥ 1} (12)

Where the value of αij is given by αij =

α
(
T ij
)

=

√
2β(T i

j ,δ
′)

T i
j

, δ
′

= δ
n×(n−1) and β(u, δ

′
) =

log(1/δ
′
) + 3 log log(1/δ

′
) + 1.5 log(1 + log(u)).

It is important to note the Lemma 1 holds when
the value of d̂ij(T

i
j) is sum of T ij independent

random variables whose values are bounded
between 0 and 1, and that expected value of d̂ij(T ij)
is equal to dij . Both of these conditions hold in our
setting by definition.

Let, LCBi
j = d̂ij(T

i
j) − αij and UCBi

j =

d̂ij(T
i
j) + αij . Then by Lemma 1, if the event Eα

occurs the following is true.

LCBi
j ≤ dij ≤ UCBi

j,∀i ∈ [n] & ∀j ∈ [n− 1]
(13)

Without loss of generality we can assume that
di1 ≤ di2 ≤ . . . ≤ din−1. Therefore, we can say
that under this assumption dik = di,ik , which is the
distance between xi and its kth nearest neighbour.

Let (·) and {·} be two permutations of [n − 1]
such that :

UCBi
(1) ≤ UCBi

(2) ≤ . . . UCBi
(n−1) (14)

LCBi
{1} ≤ LCBi

{2} ≤ . . . LCBi
{n−1} (15)

Theorem 1: If the event Eα occurs, then the
distance of kth nearest neighbour of xi denoted
by dik (or di,ik) is bounded as follows.

LCBi
{k} ≤ dik ≤ UCBi

(k), ∀i ∈ [n],∀k ∈ [n− 1]
(16)

Where the definition of (·) and {·} is as per eqs.
14 and 15 respectively.

The proof of Theorem 1 is provided in the
Appendix A.

The values of b1 and b2 is given as follows in
the new notation :

b1 = arg min
i∈{1,...,n}

LCBi
{k}

b2 = arg min
i∈{1,...,n}\b1

LCBi
{k}

We show that when the event Eα occurs, the
value returned by the algorithm (b1) is same as mk

as defined in eq. 1. If the event Eα occurs, when
the algorithm terminates we have the following.

UCBb1
(k) < LCBb2

{k} (17)

From Theorem 1 we have the following two
equations :

LCBb2
{k} ≤ dik, ∀i ∈ [n]\b1 (18)

db1k ≤ UCBb1
(k) (19)

Plugging in the eqs. 18 and 19 in the eq. 17 we
get the following result.

db1k ≤ UCBb1
(k) < LCBi

{k} ≤ dik, ∀i ∈ [n− 1]\b1

=⇒ db1k < dik,∀i ∈ [n]\b1
Therefore, when the event Eα occurs, we have

b1 = mk. As a result, the algorithm 1 provides
the corrects result with a probability 1− δ (as the
event Eα occurs with a probability 1− δ according
to Lemma 1).

VI. QUERY COMPLEXITY

Theorem 2: For a dataset X , our algorithm ran
with parameter δ yields the estimated mode mk has
query complexity at most N(X) with probability
at least 1 - δ. The logarithmic terms in n and the
double logarithmic terms are absorbed in Õ

N (xi,Xi) = Õ
(∑n−1

j=1 min
(
∆−2i,j ,m

)
+
∑k−1

j=1 min
(
∆∗−2i,j ,m

)) (20)

∆i,j =

dik+1 − dij j < k

0 j = k

dij − dik j > k

(21)

∆∗i,j = dij − dik (22)

N(X) =
n∑
i=1

N (xi,X\xi) (23)

The notation Õ absorbs factors logarithmic in
n and doubly logarithmic in the gaps.

Proof :
To prove Theorem 2 we make use of following
results which have been proved by [2] and [8]
respectively.

Lemma 2: For any point xi in dataset X ,
adaptive k-NN algorithm specified in [2] ran with
parameter δ yields the set of k nearest neighbours
and has query complexity at most N1(xi,Xi) with
probability at least 1 - δ as shown by [2].

N1(xi,Xi) = Õ
(∑n−1

j=1 min
(
∆−2i,j ,m

)
) (24)

The value of ∆i,j is as per eq. 21
Lemma 3: For a point xi and a set X k

i of size
k consisting k Nearest Neighbours of xi, UCB
algorithm specified in [8] ran with parameter
δ yields the kth nearest neighbour of xi and
has query complexity at most N2(xi,X k

i) with
probability at least 1 - δ.

N2(xi,Xi) = Õ
(∑k−1

j=1 min
(
∆∗−2i,j ,m

))
(25)

The value of ∆∗i,j is as per eq. 22.

For a given point xi, finding the set of k
nearest neighbours using adaptive k-NN algorithm
proposed in [2] and then using UCB algorithm
proposed in [8] yields the kth nearest neighbour
of xi with probability at least 1 - δ. Repeating this
for every xi in X yields kth nearest neighbour for
every point, that can be used to estimate the mode.

In our algorithm, for each point xi, the sampling
strategy followed in subroutine 2 is same as the
strategy followed in adaptive k-NN algorithm
proposed in [2] until the set of k nearest
neighbours is found, followed by a sampling
strategy proposed by the UCB algorithm in [8]
until the kth nearest neighbour is found.

Hence from Lemma 2 and Lemma 3, for a
point xi, number of queries is at most N1(xi,X)
+ N2(xi,X). Summing this over all points in X
gives us the upper bound specified in Theorem 2.

VII. EXPERIMENTS: REGIME 1
A. Datasets

Two kinds of datasets were used, namely,
Artificial dataset and Tiny ImageNet dataset.
• Artificial dataset : The artificial data is

generated via x = cQy, where Q ∈ Rm×p is
an i.i.d. Gaussian matrix, normalised to have
unit-norm columns, y are drawn uniformly at
random from the unit sphere, and c is the
largest scalar such that ‖x‖∞ ≤ 1

2
for all x in

the generated dataset.
• Tiny ImageNet dataset : The data data

comes from the Tiny ImageNet dataset
(2015), taking pixel values in [0,1]. For each
trial, we select the dataset by sampling n
points at random (without replacement for
Tiny ImageNet). For these experiments we

Algorithm 4 Naive+
Input parameters : k, n and δ.
Default parameter : num steps = m× n
mk ← 1
dmode ←∞
for i in range(n) do

Initialize d̂i and Ti as zero vectors
d̂i, Ti, u, l← AdaptiveKNN(d̂i, Ti)
di,ik ← Exact kth neighbour distance
if di,ik < dmode then
dmode ← di,ik
mk ← i

end if
end for
return xmk

used m = 12288, where the choice for m
comes from the dimensions of the Tiny
ImageNet images, which is 64× 64× 3.

B. Baselines

To gauge the performance of our algorithm,
we compared it against the performance of two
algorithms, which we call Naive and Naive+.
• Naive : In this algorithm, distance between

each pair is computed exactly, and then the
mode is selected. Thus, this algorithm makes
mn2 queries.

• Naive+ : In this algorithm, for each point in
the dataset, set of k-NN is found as specified
in [2], and then the kth neighbour is found
with a probability of 1 - δ. Then the point
with the nearest kth neighbor is picked as the
mode. The detailed algorithm is presented in
Algorithm 4

C. Experiment 1: Variation of parameters

The concentration bound used in the
experiments is

α(u) =

√
Cα log(1 + (1 + log(u))n/δ)

u

where Cα is varied, and the accuracy and the
the number of queries is plotted against Cα. This
concentration bound is same as the one used in
[2] during experiments and is used to estimate the
sub-Gaussian parameter σ .

When the concentration bound

α(u) =

√
2β(u, δ/n)

u

with β(u, δ
′
) = log(1/δ

′
) + 3 log log(1/δ

′
) +

1.5 log(1 + log(u)) was used, the accuracy was
1 with number of queries almost equal to
that of Naive algorithm implying that is bound
is extremely loose. As a result empirically
determining σ by varying Cα is required.

Apart from Cα, other parameters varied are k,
n and num steps. In all the plots, the number of
queries is normalised by dividing with mn2, which
is the number of queries in ”Naive” algorithm.

The default value of parameters are as follows :
• Cα = 0.001 (Artificial) and Cα = 0.02 (

TinyImageNet)
• k = 10
• n = 100
• m = 12288
• num steps = m×n

100

For each set of parameters, 40-100 random trials
are done, then the average accuracy and average
number of queries are plotted. For each trial,
accuracy = 1, if the estimated mode = actual mode,
0 otherwise.

1) Varying Cα : The results are plotted in
figures 1 and 2. As Cα is increased, the
concentration bound increases, leading to a better
accuracy but higher normalised number of queries
to terminate. This plot help us choose the value of
Cα, for a given requirement on accuracy.

For further experiments, Cα = 0.001 was chosen
for Artificial dataset, while Cα = 0.02 was chosen
for Tiny ImageNet dataset. This was chosen by
choosing the Cα with minimum number of queries
with accuracy = 1.

2) Varying k : The results are plotted in 3 and
4. As k is increased, the accuracy decreases until
it is close to n. The normalised number of queries
increases initially as k is increased, reaching a
maximum at around n

2
, then decreases.

Given a requirement on accuracy, this plot
helps us find the value of k for which the current
value of Cα works. Also, if the current Cα works
for some k = k0, it should be safe to assume
that the same Cα should work for k < k0, as the

accuracy decreases monotonically as k increases.

3) Varying n : For the Tiny Imagenet dataset,
the accuracy is 1 for all values of n. The
normalised number of queries along with time
taken is plotted in figure 5. As n increases,
normalised number of queries decreases. We
can conclude that the rate of increase in the
unnormalised number of queries is less than that
of mn2.

For the Artificial dataset, Cα = 0.0001 was
chosen for this experiment, so as to observe a
change in accuracy. As shown in figure 6, accuracy
increases monotonically as n is increased.

4) Varying num steps : As far as minimizing
the number of queries is concerned, num steps =
1 is the ideal choice. However, to speed up the
simulations, higher value of num steps must be
chosen. As shown in figure 7 and 8, normalised
number of queries decreases as num steps is
decreased, but is fairly constant after a point. To
strike a balance, num steps = m×n

100
is chosen for

other experiments.

D. Experiment 2: Accuracy vs Number of queries

It might be of useful to know how accurately an
algorithm estimates the mode, given the number
of queries it can use. To analyse this, accuracy vs
normalised number of queries is plotted in figure
9, for our algorithm and Naive+.

Our algorithm has better accuracy for any given
number of queries, and the number of queries
required to reach accuracy 1 is lower too.

As for each trial, accuracy is set to 0 if the
estimated mode (say xi) is not equal to the
actual mode (say xj), this measurement does
not acknowledge if di,ik is close to dj,jk or
far. Hence, another parameter, namely, ”relative
distance error” was plotted for both the algorithms.
Relative distance error is set to 0 if the mode is
estimated correctly, else it is set to:

Relative Distance Error =
di,ik − dj,jk

dj,jk

Relative distance error vs normalised number of
queries is plotted in figure 10. As expected, the

error decreases as the number of queries increase,
and our algorithm performs better than Naive+.

E. Experiment 3 : Different Elimination strategies
As detailed in Algorithm 1, the point with

minimum LCB on the distance to kth neighbour
(b1) is picked for sampling. Another variant is
when all the points that are still in contention
are picked in a round robin fashion similar to
the Action Elimination Strategy [6]. This scheme
was used for the experiments mentioned in this
section. A comparison was done between the two
variants and normalized number of queries was
plotted against number of points (n). This is shown
in figure 11, which shows that the first variant
performs better than the second.

VIII. FUTURE WORK

In future work we plan to provide theoretical
results for the correctness of algorithm 1 and also
find a theoretical bound on its query complexity.
Apart from this we also plan to extend our
algorithm for regime 2 and show its correctness
using various theoretical and experimental results.

REFERENCES

[1] S. Dasgupta and S. Kpotufe, “Optimal rates for k-nn density
and mode estimation,” in NIPS, 2014.

[2] D. LeJeune, R. G. Baraniuk, and R. Heckel, “Adaptive
estimation for approximate k-nearest-neighbor computations,”
CoRR, vol. abs/1902.09465, 2019.

[3] B. Mason, A. Tripathy, and R. Nowak, “Learning nearest
neighbor graphs from noisy distance samples,” 2019.

[4] H. Jiang, J. Li, and M. Qiao, “Practical algorithms
for best-k identification in multi-armed bandits,” CoRR,
vol. abs/1705.06894, 2017.

[5] D. Shah, T. Choudhury, N. Karamchandani, and A. Gopalan,
“Sequential mode estimation with oracle queries,” 2019.

[6] K. Jamieson and R. Nowak, “Best-arm identification algorithms
for multi-armed bandits in the fixed confidence setting,” in 2014
48th Annual Conference on Information Sciences and Systems
(CISS), pp. 1–6, 2014.

[7] E. Kaufmann, O. Cappé, and A. Garivier, “On the complexity
of best arm identification in multi-armed bandit models,” 2014.

[8] K. Jamieson and R. Nowak, “Best-arm identification algorithms
for multi-armed bandits in the fixed confidence setting,” in 2014
48th Annual Conference on Information Sciences and Systems
(CISS), pp. 1–6, 2014.

IX. FIGURES

Fig. 1: Varying Cα : Artificial dataset

Fig. 2: Varying Cα : Tiny ImageNet dataset

Fig. 3: Varying k : Artificial dataset

Fig. 4: Varying k : Tiny ImageNet dataset

Fig. 5: Varying n : Tiny ImageNet dataset

Fig. 6: Varying n : Artificial dataset

Fig. 7: Varying num steps : Artificial dataset

Fig. 8: Varying num steps : Tiny ImageNet dataset

Fig. 9: Accuracy vs Number of queries

Fig. 10: Relative distance error vs Number of queries

Fig. 11: Comparison of elimination strategy

APPENDIX A
PROOF OF THEOREM 1

We will prove this theorem by first proving
LCBi

{k} ≤ dik by the help of following result.

Lemma 4: At most k − 1 values of j exist for
j ∈ [n] such that dij < LCBi

{k}.

We prove the Lemma 4 by contradiction. Let us
assume there exists a set of k − 1 + n points
represented by {p1, p2, . . . , pk−1+n}, where n ≥ 1
and the following condition holds.

dipj < LCBi
{k},∀j ∈ [k − 1 + n]

We know that LCBi
j ≤ dij by definition, therefore

following is true.

LCBi
pj
≤ dipj < LCBi

{k},∀j ∈ [k − 1 + n]

This implies atleast k − 1 + n values of
j exist so that LCBi

j < LCBi
{k}. However,

from eq. 15 we know that exactly k − 1 such
values of j exist. These two statements are only
possible simultaneously if n = 0 however this
is a contradiction of our original assumption.
Therefore, Lemma 4 is true.

Next, it’s easy to show that LCBi
{k} ≤ dik

because if this is not true and dik < LCBi
{k}

there will be atleast k values such that dij <
LCBi

{k}, which will be a contradiction of Lemma
4. Therefore, we have the following result.

LCBi
{k} ≤ dik (26)

And by similar arguments we can also show the
following.

dik ≤ UCBi
(k) (27)

By putting together eqs. 26 and 27 proves that
Theorem 1 is true.

	INTRODUCTION
	Related Work
	Problem Formulation
	Algorithm for Regime 1
	Correctness of the Algorithm 1
	Query Complexity
	Experiments: Regime 1
	Datasets
	Baselines
	Experiment 1: Variation of parameters
	Varying C
	Varying k
	Varying n
	Varying num_steps

	Experiment 2: Accuracy vs Number of queries
	Experiment 3 : Different Elimination strategies

	Future Work
	References
	Figures
	Appendix A: Proof of Theorem 1

